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INFLUENCE OF POST-BUCKLING BEHAVIOUR ON
OPTIMUM DESIGN OF STIFFENED PANELS
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Department of Solid Mechanics, The Technical University of Denmark, Lyngby, Denmark

Abstract—For an eccentrically stiffened wide panel under compression the optimality of a design with simul-
taneous occurrence of buckling as a wide Euler column and local buckling of the plate between the stiffeners
is investigated. The total amount of material per unit width of the panel is prescribed. As a function of the dis-
tribution of this material in the plate and the stiffeners the maximum carrying capacities are calculated approx-
imately by application of Galerkin’s method. The design with the highest carrying capacity and the design with
the best ability to retain axial stiffness, corresponding to given imperfections, are determined. It is shown that
imperfections move the optimum away from the coincident buckling mode design.

INTRODUCTION

FoR compression members built up of thin plates, a design in which column buckling of
the whole structure and local buckling of the plate elements occur simultaneously has
often been accepted as the optimum design. However, this design criterion is questionable,
as was first pointed out by Koiter [1] on the basis that local buckling may promote column
failure.

In an investigation of the interaction between local buckling and column failure for
a simplified model of a thin-walled column van der Neut [2] has shown that this structure
is strongly imperfection-sensitive in the case of coincident buckling loads. Koiter and
Kuiken [3] have treated the same problem by application of the general nonlinear theory
of elastic stability, and Thompson and Lewis [4] have calculated optimal designs of ideal-
ized columns with equally imperfect flanges and no column imperfections. Using Koiter’s
general theory of elastic stability, the author [5] has shown that a wide integrally stiffened
panel under compression is particularly imperfection-sensitive when buckling of the panel
as a wide Euler column and local buckling of the plate between the stiffeners occur at the
same critical stress.

In the present paper the question of optimality of integrally stiffened panels with co-
incident buckling loads is further investigated. It is shown in [5] that such two-mode
designs are dangerous due to a high sensitivity to small imperfections, but here we shall
directly compare the maximum carrying capacities of imperfect panels with different
distributions of the available material on the plate and the stiffeners. As we mainly wish to
study the connexion between optimum design and coincident buckling load design, the
results presented here are restricted to cases with predetermined shapes and positions of
the stiffeners. The maximum carrying capacities and the stiffness are calculated approxi-
mately by a Galerkin solution of the nonlinear equations of equilibrium.
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1. NONLINEAR DIFFERENTIAL EQUATIONS

The panel in consideration is infinitely wide in the y-direction, with a constant spacing
b between the stiffeners and the distance a between the simply supported edges on which
the compressive load acts (Fig. 1). The plate thickness is h, and the eccentricity e of the
stiffeners is taken as positive in the z-direction.

FIG. 1. Part of the wide, stiffened panel.

When u, v and w are the displacements of the middle surface in the x, y and z directions,
respectively, and the unloaded, stress-free panel is assumed to have an initial imperfection
in the form of a normal displacement W, the membrane strains of the plate are taken to be

= 1,2 4 %
ex = u'x+ 2Wrx+W/xW'x

€, = Uy 3wl +w W, (1.1

8xy = %(u'y + v'x) + %W’xw'y + %(W'xw'y + V_v’yw'x)
and the bending strains are given by

Ky = W, Ky = W, Key = Wiy, (1.2)

The bending strain in a stiffener is taken to be the same as in the plate, w._,, and the axial
strain of the neutral axis is taken to be
g, =g, —ew. .. (1.3)

In [5] the contributions to ¢, from the rotation of the stiffener around its line of attachment
to the plate are also included, but the results show that this effect can be neglected for the
large range of practical structures with small values of e/b.

The usual stress—strain relationships are assumed for the plate

Eh

Nx = 1—_;—2'(8x+\’8y), Mx = D(Kx‘l‘VKfy)
Ehn
xy = mexy’ Mxy = D(l—V)ny (14)
Eh
N, = —1—:—‘)—2(£y+ ve,), M, = D(x,+vk,)

and for a stiffener
N, = E Ag,, M,=EJlw.,_,, My, =GKw.,,. (1.5)
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Here E, D and G denote Young’s modulus, the plate bending stiffness and the shear modulus,
respectively, and subscript s refers to a stiffener. The tangential bending stiffness of the
stringers is neglected.

Now using the calculus of variations in the virtual work expression and expressing the
resultant membrane stresses by means of an Airy stress function

N,=F,, N, = —F,, N,=F,,. (1.6)
we find the von Karman plate equations
DAAw = F (W + W, )—2F (w +W )+F W, +Ww.) (1.7)
1 _ _ _
i AAF = W2 =W W + 20 W =W W — W W (1.8)

where A is the Laplacian operator, and we also find the discontinuity conditions at a
stiffener

F,J;Y—F;},—Ns'x =0 (L.9)
F,—Fi. =0 (1.10)
D(W’;yy_w’;yy)+EsIsw';xxx_eNs’xx—Ns(w;x+v_v’;x) =0 (1 11)
Dw’,—wl)-GKw =0 (1.12)
Ff;y—F,‘yy =0 (1.13)
(2+v)(F,*;xy—F.;xy)-%(F?;yy—F;yy) =0 (1.14)
wt—w™ =0 (1.15)
wh—w, =0 (1.16)
where
r - -
N, = ESAS[E(F,W—vF.xx)—ew,xx:I. (1.17)

Here superscript ™ refers to the side of the stiffener in the positive y-direction and super-
script ~ refers to the other side.

Periodicity with a period of width p in the y-direction is enforced by the additional
condition

P 1 _
f I:EZ(EXX_VEyy)_%W'zy—W:yW‘y} dy = const. (1.18)
0
Any equilibrium state of the compressed panel can be written in the form
w = w(x, y) (1.19)
y2
F = 1N§?+f(x, ») (1.20)

Here the term AN2y?/2 constitutes the prebuckling solution for the perfect panel (w = 0),
where the stress state is taken to be proportional to a stress state consisting of a constant
- resultant axial membrane stress N? in the plate and a constant force N{ in the stiffeners,



1522 VIGGO TVERGAARD

while the transverse defiections vanish identically. The boundary conditions are taken to be
W = w'xx = f = fxx = O (121}

at the simply supported edges for x = 0, a.

2. CLASSICAL BUCKLING

For the perfect panel (w = 0) the classical buckling equations are obtained by sub-
stituting the expressions (1.19) and (1.20) in equations (1.7)}1.16) and then linearizing the
resultant equations with respect to w and f. As shown in [5], the critical deflection function
w, and the associated stress function f, in a plate section between two stiffeners at y = b/2
and y = —b/2 take the form

k
w, = (¢, cosh(r,y)+c, cos(r,y)) sin X 2.1
a
k .k .k
f. = |ec5cosh VZX+ ¢,y sinh %) sin —Zf (2.2)

where k is a positive integer, and

S ) = E B

In the local coordinate system of the next plate section the same expressions apply, but
with other constants ¢, ¢4, ¢, and ¢4 instead of ¢, ¢,, ¢; and ¢,. Substituting these ex-
pressions for w, and f, in the linearized discontinuity conditions, we obtain eight linear,
homogeneous equations for the constants c,,¢,,...,cg. The critical buckling load 1, is
the smallest value of the parameter 4, for any integer value of k, for which the determinant
of the coefficient matrix vanishes.

As long as the stiffeners are relatively weak, the panel buckles as a wide Euler column,
with k = 1 and identical modes for all plate sections between two stiffeners. Thus, the
constants ¢,, ¢,, ¢ and c, are identical to cs, ¢4, c; and cg, respectively, for this mode.
However, when the bending stiffness of the stringers is sufficiently high, local buckling of
the plate between the stiffeners is critical, with an integer value of k close to the value of
a/b. Except for cases where the torsional stiffness of the stringers is more dominant than
their bending stiffness, the critical local mode is one in which the stress function f, dis-
appears identically, and the constants ¢, and c, are identical to —c; and —c¢, respectively.

In the following the Euler-type buckling mode, periodic in the y-direction with one
period equal to the spacing between the stiffeners, is denoted w", ), and the critical
local buckling mode, with one period equal to twice the spacing between the stiffeners,
is denoted w'®, 2. The buckling modes are orthogonal to one another in the sense

a pb a
j f Nowd wll dy dx +f NwE W], oppdx =0 (2.4)
0Jo o

fori # j.
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3. SOLUTION BY THE GALERKIN METHOD

By application of Koiter’s general theory of elastic stability [6, 7], the initial post-
buckling behaviour of the panel under consideration has been determined in [5]. Here it
is found that the structure is particularly imperfection-sensitive in cases when Euler-type
buckling and local buckling occur at the same critical stress. In the present work we wish
to compare the behaviour of different designs built of a given amount of material per unit
width. However, for this purpose the asymptotic results of [5] are not applicable, as their
adequacy is limited to very small deflections in cases in which the local buckling stress is
slightly above the Euler buckling stress or vice versa. Therefore, the analysis here will be
based on an approximate solution of the nonlinear differential equations by application
of the Galerkin method. The same approach has been used by Hutchinson [§] to analyse
the imperfection-sensitivity of a cylindrical shell under axial compression in cases in which
the smallest critical stresses differ slightly from one another due to a superposed internal
pressure.

For a given design the Euler-type buckling mode w'"’, !’ and the local buckling mode
corresponding to the smallest buckling stress w'?, £ ) are normalized so that the maximum
normal deflection (w),,,, is equal to the maximum possible plate thickness h,, where

h, = h+A/b. (3.1)

As our primary interest is interaction of the Euler-type buckling mode and the local
buckling mode, we shall study the behaviour of a panel with small initial imperfections in
the form

w=E&wh+&w? (32)

where &, and &, denote the ratios between the imperfection amplitudes and h,. For a
panel with such imperfections it seems reasonable to approximate w by the expression

w= élwil)‘i"52W£2)+§3W‘(:3)+€4W£4) (3.3)

where the parameters £; denote the amounts introduced of the corresponding buckling
modes, and w'’ is the mode in the form (2.1), with k = 1 and the second lowest eigenvalue
corresponding to identical deflection functions for all plate sections between two stiffeners.
This mode is chosen because it is known from the asymptotic analysis in [S] that when
Euler-type buckling takes place, a major part of the second order contribution to the
deflections is contained in w'®, and when local buckling takes place, the most important
part of the second order deflection is accounted for by w{") and w®. The last mode w'*
is the lowest local buckling mode in the form (2.1), with one period equal to 2b in the
y-direction, but with two more half sine waves in the x-direction than corresponding to
w2,

As equation (1.8) is a compatibility equation, we prefer to solve it exactly for the stress
function f in terms of the assumed deflection function w. Then we are sure that the energy
computed from the approximate solution will always be larger than the minimum value
corresponding to the true solution of the nonlinear differential equations.

Substituting the assumed deflection function (3.3) in the compatibility equation (1.8)
and in the discontinuity conditions (1.9), (1.10), (1.13) and (1.14) that account for tangential
equilibrium and tangential compatibility at the stiffeners, we find that the stress function
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Jf can be written in the form

f=(E+28,E) 1 +(E3+28,8) [+ (& &+ 8+ &, E) S
& fat G fsH(EE +EE ) fo+(ExE, +EEN [+ E3 fs
+ & Lo+ (Eal i + & &) i+ (Eala+ 88N fi1 +Eua fha (3.4)

where the twelve functions f, f,,..., f;,, independent of the amplitude parameters &, ,
&5, &3, &4y &1 and &, are the solutions of twelve linear boundary value problems. The func-
tion f, is identical to f{!’, and the function fy is identical to f1*. The remaining ten boundary
value problems are solved numerically by taking the functions f(x, y) as sine-series in the
x-direction and using a finite difference method to determine the y-dependent coefficient
functions of the series. A sufficient number of terms is included in each series to ensure
convergence of the coefficients of the algebraic Galerkin equations.

Knowing the stress function (3.4) corresponding to any mode assumption in the form
(3.3), we use the Galerkin method to obtain an approximate solution of the equilibrium
equation (1.7) with the discontinuity conditions {1.11), (1.12), (1.15) and (1.16) at the
stiffeners. Thus, we choose the parameters £, &,, &5 and &, so that the principle of virtual
work is satisfied for virtual deflections equal to w’, w!?), w{® and w¥. As the solutions
are periodic in the y-direction, we need only carry out integrations over a section ABCD
of the panel (Fig. 1), and the conditions to be satisfied are:

a b
f f W?)[D AAW—(AN‘;‘+ffyy)(w'xx+W'xx)+2fxy(w’xy+w’xy)
0vYo

—‘f'xx(w’yy+ W'yy)] dy dx+ _£ (])[D(W vy —yyy)

EA
+(EI +e EA) ‘xxxx Eh fyyxx Vf xxxx

EA _ _ -
- Ehs('lNg: +f';y - vf’xx - eEhw’xx)(w'xx + W'xx)] dx

+ J WO [D(W;,—w)— G K wip,ldx =0 forj=1,2,3,4. (3.5)
0

Here the two last integrals are taken along the stiffener.

Substituting the expressions (3.3) and (3.4) for w and f in equations (3.5) and using the
orthogonality condition (2.4) together with the linear eigenvalue problem for classical
buckling, we obtain the following nonlinear algebraic equilibrium relations between A,
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€1, ¢z, ¢83and &,
E(1—A/AD) =&AL +(EF+ 28,8 )bjy +(E3+28,E,)b),
+ f%bjs +(£3¢, +5351)bj6 + éibj9+(é4€2 +f4£z)bj1 1
F(E3+E,E )iy H (28 E3+E Es)c iy + 3

4
+ Z (&4 E){(E3+28,E )a;y,+(E3 +2&,8)a0

+(&, 8+ 88+ E a4 Eiajt+ ERas + (EsE + &8 Daje;
(63€2+5352)aj7i+53a18i+¢4aj9i+(5451+f4£1)aj19i
+(€aa+Ea80)aj1i+8a83a515}] = 0, forj=1,2,34 (3.6)

where the nondimensional coefficients are given by the expressions

a pbf2 a
o= 220N [ [ wow ay ax+ 20N: [ wOWEL), ppax  G)
0O 0

1 a pbf2 .
= (), (k) k) (k)
aijk = -YT 2 wcl (_fj'yywc'xx+ zfj xyw:(: xy " Jj xxWe! y) dy dx
i 0 Y0

EsAs ¢ i
- Eh [Wi )(fj’yy - vj;"xx)wc(."f:)cx]y=b/2 dX} (38)
1]
U = —f [ (l)( f] yyXx fJ xxxx)]y=b/2 dx (39)
o= || CEADWENEY, 0z 0. (.10)
ivo

In equations (3.6) the constants b;; and ¢, vanish for j = 2, 4 since the functions w® and
wt® vanish at the stiffeners, and half of the constants a;;, vanish because of the periodicity
of the functions w® and f; with different periods in the y-direction. Furthermore, according
to the assumption (3.2), £, and £, are taken equal to zero.

If the Galerkin method is applied with only the two first terms on the right-hand side
of equation (3.3), the algebraic buckling equations reduce to equations (3.6) for j = 1,2
with &5 and ¢, equal to zero. Then, in the special case A{!’ = i*), these two buckling
equations coincide with the initial post-buckling equations derived in [5), if terms of order
&3, E2E, EE? and &€& are neglected as they were in the asymptotic analysis. However, in the
present calculations, we shall retain the higher order terms, as the carrying capacity above
the critical buckling stress in part of the range, where local buckling is critical, is described
by terms of order &3.

The inclusion of the functions w'® and w!* in the deflection assumption (3.3) results
in an appreciable lowering of the maximum carrying capacity for some designs. As a test
of the choice of these extra functions, we have tried replacing w'*’ and w® by a number of
other modes with the same periods b and 2b, respectively, in the y-direction, which can
be done without changing the form of the four Galerkin equations (3.6). However, the
reduction in the maximum carrying capacity due to these alternative extra functions was
never more than a fraction of the reduction due to w®’ and w'®, respectively. Therefore,
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it is expected that the mode assumption (3.3) leads to a good approximation of the exact
solution of the nonlinear differential equations.

4. BEHAVIOUR OF IMPERFECT PANEL

For a panel with known imperfections, the behaviour as the axial compression is
increased can be determined from a solution of the nonlinear, algebraic buckling equations.
The four buckling equations (3.6) are written formally as

g4 &, 80, E5,8) =0, fori=1,234. (4.1)

When, for a given value of &,, we know an approximate solution 1, &,, &;, &,, the devi-
ations dA, d¢,, d&;. d&, from the exact solution satisfy the equations

glA+da, &, 8 +dE, Ey+dEy E +dE) =0, fori=1,234. (4.2)

Using the Newton—Raphson method, we solve equations (4.2), linearized with respect to
dA, d¢,, d&, and dé,, to obtain an improved approximation, and this is done iteratively
till convergence is obtained.

Before compressive loads are applied to the panel the solution is (4, £, &,, &5, &)
=(0,0,0,0,0). Starting with this solution, we use the Newton-Raphson method to plot A
against £, and thus determine the maximum value A* attained by the load parameter.

A A
- _J2
(1) (2] [ orwmme 7N
A=A f,--70 0 ’
! !
1
10D 1 2 3 4 5 6% -1 0 1FE
(a}
A
@ ol
(1 i&——_
T S
/ )
J !
10 1 2 3 4 5 6% 10 1%
{b)
A A
1) (1
A \!
C n
}
0 1 2 3 4 56 7 8 9 10g 1 0 1%

{c)

Fi1G. 2. Dependence on load of mode deflections. Solid curves correspond to perfect panels. Dashed
curves correspond to imperfect panels.
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When imperfections are present only in the shape of the Euler buckling mode (€, > 0,
&, = 0), ¢, and &, remain equal to zero while £, and ¢, increase until the coefficient matrix
of the linearized equations (4.2) becomes singular. At this point, bifurcation in the shape of
the local buckling mode occurs. Depending on the panel parameters, this bifurcation
can occur before, at, or after, the point at which A* is attained. When there are also im-
perfections in the shape of the local buckling mode (¢, # 0), the mode amplitudes &, , &,,
£, and £, increase simultaneously with increasing A until a limit point is reached.

Some examples of the relationship between load and mode deflections are shown in
Fig. 2. The solid curves give the behaviour of a perfect panel, and the dashed curves show
the behaviour of a panel with small initial imperfections. Only the dependence between
A, &, and £, has been shown, but the curves are based on a solution of equations (3.6).

The panel corresponding to Fig. 2a has coincident buckling loads, while Euler-type
buckling is critical in Fig. 2b, and local buckling is critical in Fig. 2¢. In all three cases
the initial post-buckling behaviour predicted by the Galerkin method agrees with that
calculated by application of Koiter’s general theory. However, as the mode deflections
increase, the equilibrium curves tend to flatten out. For example, in the simultaneous
buckling case of Fig. 2a, this means that the sensitivity to very small imperfections is as
strong as predicted by the asymptotic solution, but for imperfections so large that the
limit point occurs under the flat part of the solid curve, a further increase of the imper-
fections results in practically no extra reduction of the limit load A*.

The average axial compression of the panel can be measured by the generalized dis-
placement

a pb a
A= NiJ~ f u, dy dx+N‘S’f [u,—ew.  J,—p2dx
0vYo 0

a pb
-m
0 Y0

1
+N‘s’f [ﬁ{lNﬁ +foyy =V oxx} —%w?x—v”v:xw,x—ew,xx] dx. 4.3)
0

y=b/2

1
(ﬁ{'{Nox_{-fyy_ vf'xx} _%w‘zx_w'xw’x) dy dx

The significance of A is that 1A represents the drop in potential energy of the external load.
Substituting the expressions (3.2)3.4) for w, w and f, respectively, in equation (4.3) and
carrying out the integrations, we find that A is given as a polynomial in terms of 4, &,
&,,¢5,8,, & and &,. Thus, A can be calculated directly as soon as the buckling equations
(3.6) have been solved, and the stiffness d4/dA can also be calculated. In the following we
shall take the stiffness in the nondimensional form

di {{dA
S=—1|- 44
dA/ (dA)a “44)
where the denominator is the prebuckling stiffness of the perfect structure.

5. OPTIMUM DESIGNS

Defining an optimally designed panel involves many parameters, such as the plate
thickness, the eccentricity of the stiffeners, the spacing between the stiffeners and the shape
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of the stiffeners. However, we shall restrict the number of parameters involved, as we wish
mainly to investigate whether a simultaneous buckling mode design has the highest
carrying capacity. Thus, we prescribe the distance a between the simple supports, the
spacing b between the stiffeners, the eccentricity e of the stiffeners and the common material
to be used in the whole panel. Furthermore, the stiffeners, attached to one side of the plate,
are assumed to have rectangular cross-sections.

Now for a panel built of a given amount of material per unit width, i.e. a panel with a
given value of h,, the maximum carrying capacity A* can be calculated as a function of
the imperfection amplitudes &, and &, and the parameter h/h,, specifying the ratio between
the amount of material in the plate and that in the whole panel. In the following, A, denotes
the critical load parameter in the case where the stiffeners disappear completely (h/h, = 1).

As a first example we consider a panel specified by a/b = 4, ¢/b = 005 and h /b =
0-0128, which at simultaneous buckling coincides with the example chosen in [5]. In
Fig. 3 the maximum carrying capacities have been plotted against h/h, for different amounts
of imperfections in a case in which &, equals &, (note that the imperfections are normalized
against h,, so that imperfections corresponding to different points on a curve with constant
& are equal relative to a constant number, but not relative to the current plate thickness).
The figure also shows the point N at which the initial post-buckling behaviour of the
perfect structure changes from stable to unstable according to the Koiter theory, and we
see that the A* curve corresponding to very small imperfections intersects the A2 curve
just below this point. The behaviour with imperfections only in the shape of the local
buckling mode (&, = 0) is shown in Fig. 4, and the behaviour if only Euler-type imper-
fections are present (¢, = 0) is shown in Fig. 5.

F1G. 3. Maximum carrying capacity 4*/4, for a panel specified by a/b = 04, e/b = 005 and h,/b =
0-0128 with imperfections &, = £,.
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A
5 T , . .
N /A
50t &,=.002
E,=.02
g,= .08
105 r E :_2 1
40} §1=0 ]
35 1 ) n 1 1
50 55 60 65 70 75 h
h0

F16. 4. Maximum carrying capacity A*/4, for a panel specified by a/b = 4, ¢/b = 0.05and h,/b = 0-0128
with only local mode imperfections.

If the panel is designed against the classical critical buckling stress, the optimum design
is clearly the one with coincident buckling loads. However, Figs. 3-5 show that the carrying
capacity in the vicinity of this design diminishes rapidly as small imperfections are intro-
duced. The local maximum of the 1* curves even vanishes when the imperfection amplitudes
exceed a value of about 0-02 in Fig. 4 and about 0-08 in Fig. 5. The figures also show that
the highest carrying capacities are predicted in the range where the local buckling stress
A? has been exceeded. Here, A* becomes even larger than the critical stress of the perfect
structure in the simultaneous buckling case. In this range, however, the limit load A*
corresponds to quite large mode deflections (Fig. 2¢), so in practice plastic deformations
may often reduce the maximum load predicted by the elastic theory.

Apart from a high limit load A*, the stiffness retained in the panel at a given load level
may be of considerable interest too. For a perfect panel the stiffness S defined by equation
(4.4) is equal to unity in the entire range below the classical buckling load. In Fig. 6 the

45

40

35
.50 55 60 BS .70 75

J’Ij

o]

FiG. 5. Maximum carrying capacity 1*/4, for a panel specified by a/b = 4, ¢/b = 0-05and h,/b = 0-0128
with only Euler-type imperfections.



1530 VI1GGO TVERGAARD

stiffness S has been plotted for two different imperfection magnitudes. It is seen that even
for small imperfections the stiffness decreases significantly at relatively low loads in the
range where 1* exceeds A2, so that this range is not advantageous from the point of view
of stiffness. Also for larger imperfections a design with A/2)/1{1 a little above unity is prefer-
able with respect to keeping a high stiffness in the panel.

A
Ao

S0
45 ¢
40t
35¢
30 ¢
25

20

15 —
50 55 60 65 70 75 h

FIG. 6. Variation of the stiffness S with the load for two different imperfection magnitudes in a panel
specified by a/b = 4, e/b = 0.05 and h,/b = 0-0128.

As another example we shall try to halve the spacing between the stiffeners without
changing the distance a between the supports, the eccentricity e of the stiffeners and the
amount of material per unit width. In this case, the panel is specified by a/b = 8, e/b = 0-1
and h,/b = 0.0256. For this panel the simultaneous buckling case corresponds to such a
small value of h/h, that further enlargement of the stiffeners at the expense of plate thick-
ness is of practically no advantage with respect to A", as can be seen in Fig. 7. Figures 7-9
show that the larger the relative amount of the local imperfections, the higher will be the
value of h/h, at which the maxima of the 1* curves occur. It can also be seen that local
mode imperfections of a given amplitude are more serious than Euler-type imperfections
of the same amplitude. Finally, the variation of the stiffness § with the load is shown in
Fig. 10 for two different magnitudes of imperfections.

In the present example, the carrying capacities predicted in the range where 1* exceeds
A?) are not larger than those in the remaining range, as they were in our first example. If
imperfections can be kept small, the optimum design will correspond to values of A22)/A(")
slightly higher than unity, but for larger imperfections, this value increases to about two,
depending on the stiffness required, if any, and on the imperfections.
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.30 .35 .40 45 .50 .55 h
ho
FiG. 7. Maximum carrying capacity 4*/4, for a panel specified by a/b = 8, e/b = 0-1 and h /b = 0-0256

with imperfections £, = &,.

CONCLUSION

An analysis of stiffened panels made of a given amount of material per unit width
shows that in some cases the design with the highest carrying capacity is one in which the
limit load is attained beyond the critical stress for local buckling. However, the stiffness
properties are relatively poor for such designs. From the point of view of retaining a high

o

70+

65

60

55

30 .35 40 45 .50 .55

o

F1G. 8. Maximum carrying capacity A*/4, for a panel specified by a/b = 8, ¢/b = 0-1 and h,/b = 0.0256
with only local mode imperfections.
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F1G. 9. Maximum carrying capacity 1*/1, for a panel specified by a/b = 8, ¢/b = 0-1 and h,/b = 0-0256
with only Euler-type imperfections.

stiffness at the highest possible load level, the best design is usually one in which the
critical stress for Euler-type buckling is smaller than that for local buckling. In some cases,
the optimum design has a local buckling stress that is more than twice the Euler buckling
stress. Thus, the optimum design from the point of view of post-buckling behaviour often
differs significantly from the design with two simultaneous buckling stresses.

FIG. 10. Variation of the stiffness S with the load for two different imperfection magnitudes in a panel
specified by a/b = 8, ¢/b = 0-1 and h,/b = 0-0256.
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AGCTpakT—/IA LIMPOKO#H TMaHeNH, IKCLUEHTPUYHO TOAKPEIUIEHHOM pebpammu KEeCTKOCTH, HarpyxXeHHOMH
CKUMAEMOR HArpy3ko#, WcClenyercs pacyeT Ha MHHUMYM MaTepHana, MpuH OOHOBPEMECHHOM HAaJIMYHH
NpOAO/LHOro W3rnba B CMbIC/IE WMPOKOA KOJNOHHBI THMA Diepa U y4eTa MECTHOTO BbIMYYHMBAHMA NNACT-
UHKKH Mexny pebpaMu KeCTKOCTH. 3alaHO CYMMApHO€ KOJIMYECTBO MATEpHasa HAa eAHHMUY WIHPOTHI
nanesun. TlyTem npumeneHus metona [anepkuHa, MOACHHUTHIBAIOTCA NMPHOIM3NTENBHO MAKCHMAnbHbie
HecyLue crocoOHoCcTH, B BUIE GyHKUNH pacnipeaesieHus 3TOro MaTep1ana B NJIaCTHHKE pebpax xecTKOCTH.
OnpenensioTcs pacyeT Mis Hafnydwied Hecylie#t cnocoGHOCTH W anA HalydieH CcrocoOHOCTH, COXpaH-~
Atoliedi oceByo KeCTKOCTh, B COOTBETCTBHH K 33JaHHBIM HETOYHOCTAM. Y Ka3aHO, YTO HETOUHOCTH yAANAOT
ONTHMYM OT COBNAJAIOLLETO pacyera GOPM BbITyYHBAHHUA.



